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Abstract. Unsaturated flow, in the presence of a web of plant roots, is modelled by Burgers’ equation with
a spatially varying sink function. The Hopf–Cole transformation results in a linear equation with non-constant
coefficients. Separation of space and time variables leads to a stationary Schrödinger equation in which the
analogue of potential energy is the integrated plant root water extraction rate. For balanced water supply on a
finite domain, the basis of eigenfunctions is given explicitly for an inverse cube plant root density and for an
exponentially decreasing plant root density.
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1. Introduction

Since machines with multi-megabyte information storage and multi-megaflop processing rates
have become commonplace on desktops, and the prefix ‘Giga’ replaces ‘Mega’ when a par-
allel processor array is employed, number-crunching assaults on nonlinear partial differential
equations will continue to be of practical importance. However, we must never overlook the
benefits to be gained from exact solutions expressible in terms of familiar special functions.
These provide insight on the relationships among physical variables, usually with an economy
of effort. Adjustment of a parameter within an exact solution is often a trivial task compared to
re-running a numerical algorithm after every change of parameter value. Exact solutions also
serve as bench tests for the validation of numerical approximate solution algorithms. Finally, it
must be admitted that some important practical P.D.E.s are out of reach of existing numerical
schemes. For example, analytic methods may indicate the degree of singularities that may
arise in temperature, concentration or concentration gradient predicted by reaction-diffusion
equations or by nonlinear wave equations.

Much of our current store of exact solutions for interesting nonlinear P.D.E.s has been
gleaned from ad-hoc methods that apply to restricted classes of P.D.E.s (e.g.[1, Chapter 1]).
More catholic approaches include Lie-symmetry methods and their generalisations [2–12],
singular manifold expansions based on the Painlevé criterion [13–17], equivalence methods
for classes of P.D.E.s [18–19] and the method of differential constraints [20]. The whole
subject has received an enormous boost in the latter 20th Century by the discovery of the
inverse-scattering transform for soliton equations [17, 21–24].

From all of these analytic methods, humankind’s conquests of practical nonlinear boundary
value problems are rare enough in number to be contained in little more than a single tome
[25]. This means that integrable P.D.E.s that are equivalent to linear equations either by change
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26 P. Broadbridge

of variable (c-integrable [26, pp. 1–61]) or by the remarkable device of the inverse scattering
transform (s-integrable [26, pp. 1–61]) are gems in the mullock heap. For after transforming
an equation to a linear canonical form, we expect to be able to solve a variety of boundary
value problems by using linear transforms.

Integrable nonlinear P.D.E.s have been systematically selected by the application of Pain-
levé tests [27–28], by existence of nonlinear superposition principles [29], by the criterion
of infinite-dimensional Lie symmetry groups [30] and by the existence of a Lie-Bäcklund
or extended (higher order) Lie-symmetry group [31–39]. The classification of second- and
third-order integrable nonlinear scalar evolution equations is apparently complete [40, pp.
115–183]. For example Svinolupov [41] lists a full set of canonical forms, under the action
of the group of contact transformations, for second-order evolution equations that possess a
Lie-Bäcklund symmetry. These are

ut = uxx + g(x)u (linear class), (1.1)

ut = uxx + 2uux + g(x) (Burgers class[42]), (1.2)

ut = ∂x[u−2ux + c1xu+ c2u] (Fujita’s equation[43]), (1.3)

and ut = ∂x[u−2ux] − 2 (Freeman-Satsuma equation[44]), (1.4)

whereg is an arbitrary function andc1, andc2 are arbitrary constants. However the subject
does not end there.

The main justification for the formal study of P.D.E.s is their ability to model and predict
real behaviour of continuous matter, energy and force fields, as well as the more recent applic-
ations of financial derivatives (e.g.Wilmott et al. [45]) genetics, epidemiology and population
dynamics (e.g.Britton [46]). In this area, much work remains to be done. If one applied an
arbitrary contact transformation to the above canonical forms, then there would emerge an
enormous variety of linearizable equations, including free parameters and free functions that
can incorporate realistic models of experimentally realisable transport processes. The solution
of practical nonlinear boundary-value problems all the way to the level of experimentally
testable predictions, tends not to be a fashionable pursuit among mathematicians who naturally
delight in building and consolidating the edifice of theory. However, this task is important
because it is the ultimate justification for continued public support of mathematical analysis.

As detailed by Broadbridgeet al. [47], each of the above equivalence classes has important
applications in soil-water flow. However, after these general comments, attention will now be
restricted to Burgers’ equation with a source term, Equation (1.2). The original linearization
procedure of Hopf [48] and Cole [49], previously known by Forsyth [50, p. 102, Ex.3], was
applied to Burgers’ equation without the source termg(x). This conservative Burgers’ equa-
tion has found many applications in gas dynamics, sedimentation theory and soil-water flow
(Burgers [42], Hopf [48], Cole [49], Clothieret al. [51], Blake and Colombera [52], Sachdev
[53], Broadbridgeet al.[54]). This has prompted development of a general approach to solving
associated canonical boundary-value problems [55] and has led to a catalogue of solutions
[56]. The fact that Burgers’ equation with a source term is linearizable has been independently
discovered by many [53, 57–59]. However, explicit solutions to practical boundary-value
problems involving the forced Burgers’ equation are rare, and possibly non-existent in the
literature.
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Burgers equation and Schrödinger’s eigenfunctions27

For globally conservative problems, in which the balanced flux boundary conditions ensure
that thex-integral of u over a finite domain[0, `] is constant in time, a Sturm–Liouville
problem results from the Hopf–Cole transformation [59]. However, it is not known for which
forcing functionsg(x), the eigenfunctions can be constructed explicitly in terms of familiar
special functions.

In Section 2, a model is developed for the transport of water through a field soil in the pres-
ence of a web of plant roots. In this case, a negative-valuedx-dependent sink term represents
a plant root extraction term averaged in the horizontal plane and diminishing with depthx into
the soil where plant roots become sparse. In field soils which include biological macropores
due to plant roots and wormholes, the soil water diffusivity typically increases only weakly
with water content, and a linear diffusion term is adequate. A nonlinear convection term is
necessary to ensure the development of a stable wetting front, as observed experimentally [60].
The Burgers equation with a sink term is an instructive model in this situation. The Hopf–Cole
transformation leads to a stationary Schrödinger equation whose potential coincides with the
potential for the plant-root forcing term. The Schrödinger operator is the archetypical self-
adjoint operator. However, the standard quantum-mechanical stationary eigenstates originally
constructed by Schrödinger cannot be used in this application. The harmonic oscillator po-
tential cannot be used, as the plant-root sink term must approach zero asx tends to∞. If
a Coulomb potential is assumed, the stationary states of the H atom cannot be used, firstly
because we have a second-derivativeuxx term rather than a Laplacian expressed in spherical
coordinates, and secondly, because we have boundary conditions on a finite domain.

In Section 3, we consider a special inverse-cube forcing term. This leads to a simple basis
of stationary eigenfunctions simply expressible in terms of trigonometric and polynomial
functions. After separation of variables, it is seen that time dependence can be incorporated
as exponential rather than oscillatory factors. Instead of a time-dependent wave equation, we
have a dissipative diffusion equation which is analogous to a time-dependent Schrödinger
equation with a pure imaginary Planck’s constant.

The inverse-cube forcing term, which allows the Schrödinger equation to have additional
Lie symmetries [61] and accidental degeneracy, is used in Section 2 merely as a device to
obtain explicit solutions. A more realistic, more desirable and less restrictive model is the ex-
ponentially decreasing sink term with arbitrary plant-root length scale. In this case, considered
in Section 3, the eigenfunctions are modified Bessel functions. In the case of balanced water
supply, these Bessel functions have pure imaginary order. Solution of initial-boundary-value
problems is much more difficult in this case, since one needs to find zeros of Bessel functions,
viewed as functions of the complex valued order.

2. Unsaturated flow in the presence of plant roots

The nonlinear equation

θt + ∂z[K(θ)−D(θ)θz] = −0g(z, θ, t) (2.1)

is widely accepted as a model for one-dimensional vertical unsaturated flow in soil with plant
roots extracting water. Here,z is the depth beneath the soil surface,θ is volumetric water
content,K is hydraulic conductivity,D is soil water diffusivity and0g is the rate of water
extraction by plant roots. For convenience,0 is the extraction rate near the surface, whereg
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is unity.0−1 is a time scale for water extraction by roots. The term in square brackets in (2.1)
is the volumetric water flux.

Lomen and Warrick [62] have solved linear water-extraction models withK ′(θ) andD
constant. Otherwise, most solutions to boundary value problems involving the nonlinear Equa-
tion (2.1) have been obtained numerically [63]. One exception is the integrable model of
Broadbridge and Rogers [39], which has(D,K, g) = (a(b− θ)−2,ma(b− θ)−1,exp(−mz)).
They gave a solution procedure for the case of balanced constant-flux boundary conditions
and arbitrary initial conditions. However, the solution was presented in full detail only in the
steady state. For the time-dependent case of unbalanced water supply, the exact solution is
still achievable, but it is extremely complicated (Li and Broadbridge, work in progress) and
therefore of limited value.

In recompacted laboratory soils,D(θ) is typically a strongly increasing function. However,
as explained by Clothieret al. [51], in field soils that contain many root channels and worm-
holes,D does not vary so much. SinceK(θ),K ′(θ) andK ′′(θ) are positive in real soils, we
may representK(θ) by a quadratic function

K = Ks22+Kn with 2 = θ − θn
θs − θn ,

whereθs is water content at saturation,θn is some low background water content andKn =
K(θn). In many species, over a wide range of water contents, above the wilting point plant
root extraction rate varies only weakly with soil water content [64]. Although explicit time
dependence could be incorporated in the forced Burgers equation, we assume that for well
established crops or plant communities, plant root density does not depend explicitly on time.

These considerations lead us to the weakly nonlinear Burgers equation with a force term,

θt = D∗θzz − 2Ks
θ − θn
(θs − θn)2θz − 0g(z/`r), (2.2)

whereD∗ is the representative soil-water diffusivity and`r is a plant root length scale. For
convenience0 is the water extraction rate near the surface andg(0) = 1.
D∗ is chosen so that the model correctly predicts the measured sorptivityS. This requires

[65]

D∗ = π

4

S2

(θs − θn)2 . (2.3)

Given uniform initial water contentθn in a domain[0,∞) and constant concentration bound-
ary conditionθ(0, t) = θs for t > 0, general nonlinear diffusion models predict the cumulative
infiltration

i =
∫ ∞

0
(θ − θn)dz +Knt = St1/2+O(t). (2.4)

This behaviour is readily verified in the laboratory and in the field, andS can be accurately
measured [66, pp. 187–208].

Now following Broadbridge and White [67], we define non-dimensional variables

τ = t/ts with ts = π

4

S2

(Ks −Kn)2 ,

ζ = z/`s with `s = π

4

S2

(Ks −Kn)(θs − θn) .
(2.5)
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Burgers equation and Schrödinger’s eigenfunctions29

The time scalets is the time over which gravity begins to dominate capillary action in the
transport of water from a saturated surface, when theO(t) correction in (2.4) is no longer
minor. This time scale may range from 30 minutes for a sand, up to a week for a clay [68]. The
length scalè s is the capillary rise in a tube whose diameter is a typical soil pore diameter [69].
In terms of normalised water content2 and dimensionless variables, the governing P.D.E.
(2.2) is equivalent to

2τ = 2ζζ − 222ζ − νg(ζ/λr), (2.6)

whereν = 0ts/(θs − θn) andλr = `r/`s. This is the Burgers equation with an additional
spatially varying sink term.

Applying the Hopf–Cole transformation

2 = −vζ
v
, (2.7)

we obtain[vζ
v
− ∂ζ

] [
vτ − vζζ − νλrG(ζ/λr)v − h(t)v

]
, (2.8)

where functionG is an integral of the functiong andh is an arbitrary function. Hence it is
sufficient thatv satisfies a linear equation of the form

vτ − vζζ − νλrG(ζ/λr)v = h(τ)v (2.9)

for some functionh. Now consider separation of variables

v(ζ, τ ) = p(τ)q(ζ ),
leading to the separated system

p′(τ )− h(τ)p = −Ep, (2.10)

−q ′′(ζ )− νλrG(ζ/λr)q = Eq. (2.11)

Since (2.11) is the stationary Schrödinger equation with potential energy−νλrG(ζ/λr), there
exists a basis of generalised eigenfunctions forL2(R). The force in this case is−νg(ζ/λr),
which is attractive in our application, for whichg > 0.

OverL2(R), the Schrödinger operator may have a continuous spectrum as well as a discrete
spectrum, analogous to the ionised states and bound states of the H atom [70]. From (2.10)
the general time-dependent solution to (2.9) is a linear combination of functions of the form

p0 exp

(
−Eτ +

∫ τ

0
h(τ1)dτ1

)
qE(ζ ), (2.12)

whereqE(ζ ) are the independent eigenfunctions satisfying (2.11).
We now consider a finite layer of soil, withz restricted to[0, `]. Equivalently,ζ is restricted

to [0, λ] whereλ = `/`s. We assume that at the lower boundary there is an impermeable
barrier, so that we have the no-flow boundary condition

22−2ζ = 0 at ζ = λ. (2.13)
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30 P. Broadbridge

This can be simply expressed in terms of the Hopf-Cole potentialv as

vζζ

v
= 0 at ζ = λ

implying

vτ (λ, τ) =
[
h(τ)+ ν`r

`s
G(λ/λr)

]
v, (2.14)

by (2.9). We are free to chooseh(τ) to be the constant

h = −νλrG(λ/λr). (2.15)

Then (2.14) reduces to

v(λ, τ) = v1, (2.16)

for some constantv1.
The total water extraction rate per unit cross section area is∫ `

0
0g(z/`r)dz.

In order for this to be balanced by the water flux at the boundary, we must have

Ks2
2−D∗2z =

∫ `

0
0g(z/`r)dz at z = 0,

which implies

22−2ζ = νλr [G(λ/λr)−G(0)] at ζ = 0. (2.17)

Without detailed information on the structure of the extraction functionG(ζ/λr) or on the
initial water distribution2(ζ,0), the essential dimensionless parameters of the problem (2.6),
(2.13), (2.17) are the dimensionless extraction rateν, the dimensionless root lengthλr and the
dimensionless layer thicknessλ.

Applying the Hopf–Cole transformation (2.7) to (2.17), one obtains

vζζ = νλr [G(λ/λr)−G(0)]v at ζ = 0

implying vτ = 0, by (2.9) and (2.15).
Hence,v takes a constant value atζ = 0,

v(0, τ ) = v0. (2.18)

If we consider the case of a balanced water supply, then there may exist a steady statevs(ζ )

satisfying the governing equation and boundary conditions. Thenw(ζ, τ) = v(ζ, τ ) − vs(ζ )
will satisfy homogenous boundary conditions, along with the original governing equation.
Separation of variables will then result in a Sturm–Liouville problem.
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Burgers equation and Schrödinger’s eigenfunctions31

In the remaining sections, two choices of the water uptake functiong lead to explicit present-
ation of the eigenfunctions in terms of familiar special functions and elementary functions.
This will allow exact solution of the model of unsaturated flow with balanced flux boundary
conditions, in the presence of a web of plant roots.

3. An elementary solution with inverse-cube sink term

Consider a plant-root extraction term−0g(z/`r) with

g(z/`r) =
(
z

`r
+ 1

)−3

. (3.1)

The stationary Schrödinger equation (2.11) then specialises to

−q ′′(ζ )+ νλr
2
(ζ/λr + 1)−2q = Eq. (3.2)

This is related to the equation for the radial Coulomb functions [71].

−q ′′(r)− aq
r
+ `(`+ 1)q

r2
= Eq,

wherein the inverser term is the Coulomb potential and the inverse-square term in the ef-
fective potential is due to the quantised squared angular momentum`(` + 1). An important
difference here is that boundary conditions are imposed on a finite domain[0, λ]. Presumably,
the eigenfunctions for the general form of (3.2) could be expressed in terms of hypergeomet-
ric functions. However, considerable simplicity can be gained after making some additional
plausible restrictions. Firstly, the plant root length scale should be closely related to the in-
trinsic soil length scale [39],λr = `r/`s = O(1), since capillary action in roots is analogous
to capillary rise through soil pores. Indeed, the capillary length scale of a medium texture soil
is typically 40 cm [68], a reasonable plant root depth. Secondly, it is assumed that the time
scale 1/0for plant root uptake is closely related to the time`rθs/Ks for water to fall through
saturated soil to the depth of a typical plant root. Plant roots would not need to extend deeper
in order to extract water efficiently. Hence it is reasonable to assume0`r/Ks = O(1). In the
special case0`r/Ks = 4/λ2

r , (3.2) reduces to

(ζ + λr)2q ′′(ζ )− (2− [ζ + λr ]2E)q = 0 (3.3)

which has an elementary general solution

q = A

ζ + λr + B(ζ + λr)
2 for E = 0, (3.4)

q = A

(
−µ sin(µ[ζ + λr ])− cos(µ[ζ + λr ])

ζ + λr
)

+B
(
µ cos(µ[ζ + λr ])− sin(µ[ζ + λr ])

ζ + λr
)

for E = µ2 > 0, (3.5)
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32 P. Broadbridge

q = A

(
−µ sinh(µ[ζ + λr])+ 1

ζ + λr cosh(µ[ζ + λr ])
)

+B
(
µ cosh(µ[ζ + λr])− 1

ζ + λr sinh(µ[ζ + λr])
)

for E = −µ2 < 0. (3.6)

From (2.10)–(2.11), the steady statevs(ζ ) for v(ζ, τ ) is of the form (3.5) withµ =√
2/(λ+ λr). Since the gauge transformationv̄ = v/A has no effect on the physical variable

2, without loss of generality it may be assumed that in (3.5)A = 1 orA = 0. There remains
a free parameterB which may in practice be determined by a physical quantity such as the
total water volume [72].

Now the homogenised Hopf–Cole potential

w(ζ, τ) = v(ζ, τ )− vs(ζ ) (3.7)

satisfies the linear Equation (2.9) subject to homogeneous boundary conditions

w(0, τ ) = w(λ, τ) = 0. (3.8)

Hence, in accord with (2.12) we have an expansion of the form

v = vs(ζ )+
∞∑
n=0

an exp([h− En]τ)qn(ζ ) (3.9)

whereqn(ζ ) are the orthonormal independent eigenfunctions of the form (3.4), (3.5) or (3.6)
subject to boundary conditions (3.8). Since this is a regular Sturm–Liouville problem, there
must exist a minimum eigenvalueE0 and we may assume thatEn are in increasing order. In
fact, there is a countable infinite set of eigenfunctionsqn(ζ ) of the form (3.5), withEn =
µ2
n > 0 obtained as positive roots of the equation

tanλµ = λµ

µ2λr(λ+ λr)+ 1
= φ(µ) (3.10)

This is the condition that the two boundary conditions can be satisfied by nontrivial choice of
A andB.

The curvey = φ(µ) is tangent to the curvey = tanλµ at µ = 0, has a single local
maximum at

µ = [λr(λ+ λr)]−1/2,

a single positive valued inflection point atµ = [λr(λ + λr)/3]−1/2, and is asymptotic to
y = λ/µλr(λ+ λr). Hence,y = φ(µ) has one intersection with each continuous segment of
the curvey = tanλµ.

From the boundary conditionsqn(0) = 0, we deduce(A,B) = (An, Bn), where

Bn = Anµnλr tan(µnλr)+ 1

µnλr − tan(µnλr)
.
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Burgers equation and Schrödinger’s eigenfunctions33

Figure 1. Steady state soil water profiles in the presence of plant roots.λ = λr = 1. Solid curves are steady states
with total water content increasing from left curves to right curves. Dashed curve is the solution for conservative
Burgers’ equation in the absence of plant roots but with the same water content as rightmost solid curve.

Then (3.10) is the condition thatgn(λ) = 0. It is natural to chooseAn so that the eigenfunc-
tions are normalized onL2(0, λ),

A−2
n = µn

∫ (λ+λr )µn

λrµn

{
sinφ + cosφ

φ
+ µnλr tan(µnλr)+ 1

µnλr − tan(µnλr)

(
− cosφ + sinφ

φ

)}2

dφ.

Then, since the eigenfunctions of a self-adjoint operator are orthogonal, the solution for
v(ζ, τ ) with initial datav0(ζ )must be

v(ζ, τ ) = vs(ζ )+
∞∑
n=0

pn e(h−En)τqn(ζ )

where

pn =
∫ λ

0
qn(ζ )v0(ζ )dζ.

For example, we consider uniform initial water content20. By (2.7), the initial condition for
the Hopf-Cole potential may be taken to be

v0(ζ ) = exp(−20ζ ).

Figure 1 shows the steady-state moisture profiles with normalized water content2 plotted
against the dimensionless depth zeta. Each solution satisfies Burgers’ equation with a sink
(2.2) and (3.1), subject to zero flux at the lower boundary. The length parameters are chosen
to beλ = 1 andλr = 1. There are many solutions because of the additional free parameter
which may be regarded as total water content, increasing from left to right. For comparison,
the steady-state solution of the conservative Burgers equation is included [73–74], with the
same total water content as in the depicted nonconservative solution with the highest total
water content. Whereas the conservative model predicts a water content increasing with depth,
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34 P. Broadbridge

Figure 2. Evolving soil water profile in the presence of plant roots. Uniform initial water content
2 = 0·53, λ= λr = 1. Output timesτ = 0·0, 0·01,0·1, 0·5 and 1·0.

the water consumption by plant roots demands a positive water flux atζ = 0, so that the water
content must decrease below the surface. In the nonconservative solutions with high total
water content, the local water content attains a minimum in the soil interior. Hence, the effect
of plant roots on long-term water content profile can be quite marked.

Figure 2 displays a soil water content profile evolving from uniform initial conditions2 =
0·53. The length parameters are again chosen to beλ = λr = 1. It is clear that the steady state
has been effectively established at dimensionless timeτ = 0·5, since the profiles at times 0·5
and 1·0 are practically indistinguishable.

4. Exponentially decreasing sink term

Now consider the case of an exponentially decreasing sink term,

g(z/`r) = exp(−z/`r). (4.1)

In this case, the Schrödinger equation (2.11) takes the form

−q ′′(ζ )+ νλr exp(−ζ/λr)q = Eq. (4.2)

After changing independent variable to

ξ = 2λ3/2
r ν1/2 exp(−ζ/2λr),

Equation (4.2) transforms to

ξ2qξξ + ξqξ − q(ξ2 − ω2) = 0. (4.3)

This is the modified Bessel equation of orderiω, with general solution

q = AIiω(ξ)+ BKiω(ξ). (4.4)
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Burgers equation and Schrödinger’s eigenfunctions35

Using the modified Bessel functionsKiω of pure imaginary order, we may expand any function
f in L2(0,∞) as a continuous generalized Fourier expansion

f (ξ) = 1

π2

∫ ∞
0
Ki
√
λ(ξ) sinh(π

√
λ)dλ

∫ ∞
0
Ki
√
λ(ζ )

f (ζ )

ζ
dζ. (4.5)

This is the expansion formula of Section 4.15 of Titchmarsh [75] except that here the lower
limit of integration is given correctly as 0 rather than−∞.

When the elementary boundary conditions (3.8) are imposed on a finite domain, the con-
tinuous expansion (4.5) is replaced by a discrete orthonormal expansion in the same way as
the standard Fourier transform would be replaced by a Fourier sine series. However, in this
case the eigenvalues areEn = ω2

n/4λ
2
r , whereωn are the values that allow a nontrivial solution

(A,B) of the system

AIiωn(ξ0)+ BKiωn(ξ0) = 0, AIiωn(ξ1)+ BKiωn(ξ1) = 0,

where(ξ0, ξ1) = 2λ3/2
r ν1/2(1,exp(−λ/2λr)). That is, theωn values are zeros of modified

Bessel functions, viewed as functions of the pure imaginary argument. As far as the author is
aware, these have not been evaluated.

The steady state for2(ζ) is given as

− 1

vs

dvs
dζ
= λ

1/2
r ν1/2

vs
exp(−ζ/2λr)dvs

dξ

wherevs = AIiω0(ξ)+ BKiω0(ξ) with ω0 = 2λ3/2
r ν1/2 exp(−λ/2λr), by (2.12) and (2.15).

5. Conclusions

Although the Burgers equation with an appended spatially varying sink term is widely known
to be exactly linearizable, the construction of exact solutions to practical boundary-value prob-
lems remains a challenging task. Here, we have concentrated on an application in soil water
flow, in which the dependent variable2 is the volumetric water content and the sink term rep-
resents extraction of water by plant roots. Applying separation of space and time variables, we
find that the space-dependent factor satisfies a stationary linear Schrödinger equation whose
potential energy is the integrated plant-root sink function, and the time-dependent factor is
exponential. If we impose balanced flux boundary conditions on a finite domain, in which the
net water supply balances the plant root requirements, then a steady-state solution exists. This
steady state is relatively easy to calculate, as the Burgers equation then reduces to a Riccati
equation, which is equivalent to a second-order linear ordinary differential equation. One of
the two parameters of the general solution of this equation is redundant, as the water content2

is not altered by a rescaling gauge transformation of the Hopf-Cole potentialv. However, the
second parameter allows us to freely vary a physical quantity such as the total water content
of the finite soil column, which is invariant in the time-dependent solution. From the steady-
state solutions it is already apparent that plant-root absorption may drastically modify the
soil-water-content profile. The demands of plant roots must be in adaptive response to a long-
term average water supply that can be maintained only with a predominantly negative water
concentration gradient. This contrasts with the water build-up at the impermeable basement
that will be more noticeable when plant roots are absent.
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If we subtract the steady-state solution from the Hopf–Cole potentialv, then there remains
the task of solving a Sturm–Liouville eigenvalue problem. The form of the eigenfunctions is
known explicitly for some special cases such as an inverse-cube sink function or a decreasing
exponential sink function. For one special, but reasonable case of the inverse-cube sink func-
tions, the eigenfunctions are elementary and the eigenvalues are solutions of a trigonometric-
rational equation. In principle, since the Sturm–Liouville theory provides an orthonormal
basis, the original boundary-value problem can be solved with any initial condition. For the
exponential sink term, the eigenvalues remain to be evaluated as the zeros in the order domain
of modified Bessel functions of pure imaginary order.

Although it has not been pursued further here, it is clear from (2.7) that constant-water-
concentration boundary conditions on a finite domain will also lead to a Sturm–Liouville
problem for the Hopf–Cole potentialv, in this case satisfying linear boundary conditions of
the Robin type. In this case, there will also exist a steady-state solution, and evaluation of
the time-dependent solution will proceed in the same manner as for the previously discussed
problem with balanced flux boundary conditions.

For the case of unbalanced flux boundary conditions, there will no longer be a steady-state
solution. The boundary conditions forv will be time-dependent and no longer of the Sturm–
Liouville class. Without a known solution satisfying the inhomogeneous boundary conditions,
there is no ultimate gain in solving the related homogeneous problem. If we remove the time
variable by applying the Laplace transform rather than by separating variables, then we will
be faced with the problem of taking very difficult inverse Laplace transforms. For example, in
the case of the exponential water-extraction term, we obtain a function in which the Laplace
transform variable appears in the order of modified Bessel functions.

This example illustrates that idealized nonlinear boundary value problems are well worth
studying, firstly, because they make contact with the real world and, secondly, because they
generate intrinsically interesting and challenging mathematical questions. Intrinsically inter-
esting mathematical questions generally have many unforeseen applications. Who would have
thought that the spectral theory of Schrödinger operators, originally motivated by observations
on atomic structure, would find future applications to waves in shallow water and to water
uptake by plant roots?
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